Stability equivalence between the analytic solutions and...

发布日期: 2017-04-06  作者:    浏览次数: 250 


报告时间:2017410日(周一)上午900 – 12🧱:00

地点:10号楼222

 

报告人:邓飞其  华南理工大学

题目:Stability equivalence between the analytic solutions and
 Euler-Maruyama numerical solutions of neutral delayed stochastic differential equations

摘要:In this talk, the investigation on the mean square exponential stability equivalence between the analytic and Euler-Maruyama numerical solutions of the 
neutral delayed stochastic differential equations (NDSDEs) via the continuous time Euler-Maruyama solutions is introduced. Firstly, with some preliminaries on basic notations and assumptions, we establish the approximation degree of the numerical solutions to the analytic one of the underlying equation under the global Lipschitz condition for the dynamics and contractive mapping condition for the neutral operator of the equation, which guarantee the existence and uniqueness of the global solution. Then we show that the analytic solution of the underlying NDSDE is exponentially stable in mean square if and only if, for some sufficiently small stepsize, the Euler-Maruyama numerical solution is exponentially stable in mean square. With such a conclusion, the mean square exponential stability of the NDSDEs can be affirmed just by the simulation approach. Finally, a constructive example is proposed to verify the theoretical result by simulation. Relatively, some analysis around the present topic will be given by remarks and some challenging problems for further works will be proposed in the conclusion section.


 
  版权所有顺盈平台-顺盈-顺盈娱乐-上海顺盈平台娱乐官网  请勿转载和建立镜像© © 违者依法必究© © 顺盈平台
 
 
顺盈平台专业提供:顺盈平台等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流,顺盈平台欢迎您。 顺盈平台官网xml地图
顺盈平台 顺盈平台 顺盈平台 顺盈平台 顺盈平台 顺盈平台 顺盈平台 顺盈平台 顺盈平台 顺盈平台